Package: varian (via r-universe)

November 6, 2024

Title Variability Analysis in R

Version 0.3.0

Date 2023-03-16

URL https://joshuawiley.com/varian, https://github.com/JWiley/varian

BugReports https://github.com/JWiley/varian/issues

Description Uses a Bayesian model to estimate the variability in a repeated measure outcome and use that as an outcome or a predictor in a second stage model.

Depends R (>= 4.0.0)

Imports stats, rstan (>= 2.21.0), ggplot2, JWileymisc, extraoperators, MASS, Formula, grid, gridExtra

Suggests shinystan, testthat

License MIT + file LICENSE

Encoding UTF-8

LazyData true

Config/testthat/edition 3

VignetteBuilder knitr

RoxygenNote 7.2.3

Config/pak/sysreqs cmake make libicu-dev libx11-dev zlib1g-dev

Repository https://jwiley.r-universe.dev

RemoteUrl https://github.com/jwiley/varian

RemoteRef HEAD

RemoteSha 81df622830718483f2dda416da6024b40098474f

Contents

gamma_params		 	 	 2
res_gamma		 	 	 2
simulate_gvm	•••	 	 	 3

res_gamma

stan_inits	4
summary.vm	5
Variability_Measures	6
varian	8
vmp_plot	10
vm_diagnostics	11
vm_stan	12
	14

Index

gamma_params Estimate the parameters for a Gamma distribution

Description

This is a simple function to estimate what the parameters for a Gamma distribution would be from a data vector. It is used internally to generate start values.

Usage

gamma_params(x)

Arguments

Х

a data vector to operate on

Value

a list of the shape (alpha) and rate (beta) parameters and the mean and variance

Author(s)

Joshua F. Wiley <jwiley.psych@gmail.com>

res_gamma

Estimates the parameters of a Gamma distribution from SDs

Description

This function calcualtes the parameters of a Gamma distribution from the residuals from an individuals' own mean. That is, the distribution of (standard) deviations from individuals' own mean are calculated and then an estimate of the parameters of a Gamma distribution are calculated.

Usage

res_gamma(x, ID)

simulate_gvm

Arguments

х	A data vector to operate on
ID	an ID variable of the same length as x

Value

a list of the shape (alpha) and rate (beta) parameters and the mean and variance

Author(s)

Joshua F. Wiley <jwiley.psych@gmail.com>

Examples

```
set.seed(1234)
y <- rgamma(100, 3, 2)
x <- rnorm(100 * 10, mean = 0, sd = rep(y, each = 10))
ID <- rep(1:100, each = 10)
res_gamma(x, ID)</pre>
```

simulate_gvm Simulate a Gamma Variability Model

Description

This function facilitates simulation of a Gamma Variability Model and allows the number of units and repeated measures to be varied as well as the degree of variability.

Usage

simulate_gvm(n, k, mu, mu.sigma, sigma.shape, sigma.rate, seed = 5346)

Arguments

n	The number of repeated measures on each unit
k	The number of units
mu	The grand mean of the variable
mu.sigma	The standard deviation of the random mean of the variable
sigma.shape	the shape (alpha) parameter of the Gamma distribution controlling the residual variability
sigma.rate	the rate (beta) parameter of the Gamma distribution controlling the residual variability
seed	the random seed, used to make simulations reproductible. Defaults to 5346 (arbitrarily).

Value

a list of the data, IDs, and the parameters used for the simulation

Author(s)

Joshua F. Wiley <jwiley.psych@gmail.com>

Examples

```
raw.sim <- simulate_gvm(12, 140, 0, 1, 4, .1, 94367)
sim.data <- with(raw.sim, {
   set.seed(265393)
   x2 <- MASS::mvrnorm(k, c(0, 0), matrix(c(1, .3, .3, 1), 2))
   y2 <- rnorm(k, cbind(Int = 1, x2) %*% matrix(c(3, .5, .7)) + sigma, sd = 3)
   data.frame(
      y = Data$y,
      y2 = y2[Data$ID2],
      x1 = x2[Data$ID2],
      x1 = x2[Data$ID2, 1],
      x2 = x2[Data$ID2, 2],
      ID = Data$ID2)
})</pre>
```

stan_inits

Calculate Initial Values for Stan VM Model

Description

Internal function used to get rough starting values for a variability model in Stan. Uses inidivudal standard deviations, means, and linear regressions.

Usage

```
stan_inits(
    stan.data,
    design = c("V -> Y", "V -> M -> Y", "V", "X -> V", "X -> V -> Y", "X -> M -> V"),
    useU = TRUE,
    UQ = FALSE,
    IIVQ = FALSE,
    centerU = 0,
    centerIIV = 0,
    ...
)
```

Arguments

stan.data A list containing the data to be passed to Stan

design	A character string indicating the type of model to be run. One of "V -> Y" for variability predicting an outcome, "V -> M -> Y" for mediation of variability on an outcome, "V" to take posterior samples of individual variability estimates alone.
useU	A logical value whether the latent intercept estimated in Stage 1 should also be used as a predictor. Defaults to TRUE. Note if there is a mediator as well as main outcome, the latent intercepts will be used as a predictor for both.
UQ	A logical value whether the latent intercept estimated in Stage 1 should also be used as a predictor with a qudratice effect. Defaults to FALSE. Note if there is a mediator as well as main outcome, the latent intercepts will be used as a predictor for both.
IIVQ	A logical value whether the latent variabilities estimated in Stage 1 should also be used as a predictor with a qudratice effect. Defaults to FALSE. Note if there is a mediator as well as main outcome, the latent intercepts will be used as a predictor for both.
centerU	A numeric vector of length one (scalar) that is used to center the latent inter- cept estimates before using as a predictor of the outcome / mediator. Uses the formula: (U - centerU). Particularly useful when including quadratic terms.
centerIIV	A numeric vector of length one (scalar) that is used to center the latent variabil- ity estimates before using as a predictor of the outcome / mediator. Uses the formula: (IIV - centerIIV). Particularly useful when including quadratic terms.
	Additional arguments passed to sampling.

Value

A named list containing the initial values for Stan.

Author(s)

Joshua F. Wiley <josh@elkhartgroup.com>

Examples

make me!

summary.vm

Summary method for variability model objects

Description

Summary method for variability model objects

Usage

```
## S3 method for class 'vm'
summary(object, digits = getOption("digits"), ...)
```

Arguments

object	An object of class vm.
digits	The number of digits to use for rounding.
	Additional arguments. Not currently used.

Variability_Measures Variability Measures

Description

by_id - Internal function to allow a simple statistic (e.g., SD) to be calculated individually by an ID variable and returned either as per ID (i.e., wide form) or for every observation of an ID (i.e., long form).

sd_id - Calculates the standard deviation of observations by ID.

rmssd - Calculates the root mean square of successive differences (RMSSD). Note that missing values are removed.

rmssd_id - Calculates the RMSSD by ID.

rolling_diff - Calculates the average rolling difference of the data. Within each window, the difference between the maximum and minimum value is computed and these are averaged across all windows. The equation is:

$$\frac{\sum_{t=1}^{N-k} max(x_t, \dots, x_{t+k}) - min(x_t, \dots, x_{t+k})}{N-k}$$

rolling_diff_id - Calculates the average rolling difference by ID

Usage

```
by_id(x, ID, fun, long = TRUE, ...)
sd_id(x, ID, long = TRUE)
rmssd(x)
rmssd_id(x, ID, long = TRUE)
rolling_diff(x, window = 4)
rolling_diff_id(x, ID, long = TRUE, window = 4)
```

Arguments

x	A data vector to operate on. Should be a numeric or integer vector, or coercible to such (e.g., logical).
ID	an ID variable indicating how to split up the x vector. Should be the same length as x.
fun	The function to calculate by ID
long	A logical indicating whether to return results in "long" form (the default) or wide (if FALSE).
	Additional arguments passed on to fun
window	An integer indicating the size of the rolling window. Must be at least the length of x.

Value

by_id - A vector the same length as x if long=TRUE, or the length of unique IDs if long=FALSE.

sd_id - A vector of the standard deviations by ID

rmssd - The RMSSD for the data.

rmssd_id - A vector of the RMSSDs by ID

rolling_diff - The average of the rolling differences between maximum and minimum.

rolling_diff_id - A vector of the average rolling differences by ID

Note

These are a set of functions designed to calculate various measures of variability either on a single data vector, or calculate them by an ID.

Author(s)

Joshua F. Wiley <jwiley.psych@gmail.com>

Examples

```
sd_id(mtcars$mpg, mtcars$cyl, long=TRUE)
sd_id(mtcars$mpg, mtcars$cyl, long=FALSE)
rmssd(1:4)
rmssd(c(1, 3, 2, 4))
rmssd_id(mtcars$mpg, mtcars$cyl)
rmssd_id(mtcars$mpg, mtcars$cyl, long=FALSE)
rolling_diff(1:7, window = 4)
rolling_diff(c(1, 4, 3, 4, 5))
rolling_diff_id(mtcars$mpg, mtcars$cyl, window = 3)
```

varian

Description

This function uses a linear mixed effects model that assumes the level 1 residual variance varies by Level 2 units. That is rather than assuming a homogenous residual variance, it assumes the residual standard deviations come from a Gamma distribution. In the first stage of this model, each Level 2's residual standard deviation is estimated, and in the second stage, these standard deviations are used to predict another Level 2 outcome. The interface uses an intuitive formula interface, but the underlying model is implemented in Stan, with minimally informative priors for all parameters.

Usage

```
varian(
  y.formula,
  v.formula,
 m.formula,
  data,
 design = c("V -> Y", "V -> M -> Y", "V", "X -> V", "X -> V -> Y", "X -> M -> V"),
  useU = TRUE,
  UQ = FALSE,
  IIVQ = FALSE,
  centerU = 0,
  centerIIV = 0,
  totaliter = 2000,
  warmup = 1000,
  chains = 1,
  inits = NULL,
  modelfit,
  autoDrop = TRUE,
  opts = list(SD_Tol = 0.01, pars = NULL),
  . . . ,
  template_only = FALSE
)
```

Arguments

y.formula	A formula describing a model for the outcome. At present, this must be a con- tinuous, normally distributed variable.
v.formula	A formula describing a model for the variability. Note this must end with ID, where ID is the name of the ID variable in the dataset. At present, this must be a continuous, normally distributed variable.
m.formula	An optional formula decribing a model for a mediatior variable. At present, this must be a continuous normally distributed variable.

data	A long data frame containing an both the Level 2 and Level 1 outcomes, as well as all covariates and an ID variable.
design	A character string indicating the type of model to be run. One of "V -> Y" for variability predicting an outcome, "V -> M -> Y" for mediation of variability on an outcome, "V" to take posterior samples of individual variability estimates alone.
useU	A logical value whether the latent intercept estimated in Stage 1 should also be used as a predictor. Defaults to TRUE. Note if there is a mediator as well as main outcome, the latent intercepts will be used as a predictor for both.
UQ	A logical value whether the latent intercept estimated in Stage 1 should also be used as a predictor with a qudratice effect. Defaults to FALSE. Note if there is a mediator as well as main outcome, the latent intercepts will be used as a predictor for both.
IIVQ	A logical value whether the latent variabilities estimated in Stage 1 should also be used as a predictor with a qudratice effect. Defaults to FALSE. Note if there is a mediator as well as main outcome, the latent intercepts will be used as a predictor for both.
centerU	A numeric vector of length one (scalar) that is used to center the latent inter- cept estimates before using as a predictor of the outcome / mediator. Uses the formula: (U - centerU). Particularly useful when including quadratic terms.
centerIIV	A numeric vector of length one (scalar) that is used to center the latent variabil- ity estimates before using as a predictor of the outcome / mediator. Uses the formula: (IIV - centerIIV). Particularly useful when including quadratic terms.
totaliter	The total number of iterations to be used (not including the warmup iterations), these are distributed equally across multiple independent chains.
warmup	The number of warmup iterations. Each independent chain has the same number of warmup iterations, before it starts the iterations that will be used for inference.
chains	The number of independent chains to run (default to 1).
inits	Initial values passed on to stan. If NULL, the default, initial values are estimated means, standard deviations, and coefficients from a single level linear regression.
modelfit	A compiled Stan model (e.g., from a previous run).
autoDrop	A logical argument whether to automatically drop IDs that have no variability. Defaults to TRUE.
opts	A list giving options. Currently only SD_Tol which controls the tolerance for how small a variables standard deviation may be without stopping estimation (this ensures that duplicate variables, or variables without any variability are included as predictors).
	Additional arguments passed to sampling.
template_only	A logical, not commonly used. If TRUE returns the Stan template code only, without actually compiling or running the Stan model. Useful for modifying the default models.

Value

A named list containing the model results, the model, the variable.names, the data, the random seeds, and the initial function .call.

Author(s)

Joshua F. Wiley <jwiley.psych@gmail.com>

Examples

```
## Not run:
 sim.data <- with(simulate_gvm(4, 60, 0, 1, 3, 2, 94367), {</pre>
   set.seed(265393)
   x2 <- MASS::mvrnorm(k, c(0, 0), matrix(c(1, .3, .3, 1), 2))</pre>
   y2 <- rnorm(k, cbind(Int = 1, x2) %*% matrix(c(3, .5, .7)) + sigma, sd = 3)
   data.frame(
     y = Data$y,
     y2 = y2[Data$ID2],
     x1 = x2[Data$ID2, 1],
     x2 = x2[Data$ID2, 2],
     ID = Data$ID2)
 })
 m <- varian(y2 ~ x1 + x2, y ~ 1 | ID, data = sim.data, design = "V \rightarrow Y",
   totaliter = 10000, warmup = 1500, thin = 10, chains = 4, cores = 4,
    verbose=TRUE)
 # check diagnostics
 vm_diagnostics(m)
 sim.data2 <- with(simulate_gvm(21, 250, 0, 1, 3, 2, 94367), {</pre>
    set.seed(265393)
   x2 <- MASS::mvrnorm(k, c(0, 0), matrix(c(1, .3, .3, 1), 2))
   y2 <- rnorm(k, cbind(Int = 1, x2) %*% matrix(c(3, .5, .7)) + sigma, sd = 3)</pre>
   data.frame(
     y = Data$y,
     y^2 = y^2[Data^{ID2}],
     x1 = x2[Data$ID2, 1],
     x2 = x2[Data$ID2, 2],
     ID = Data$ID2)
 })
 # warning: may take several minutes
 m2 <- varian(y2 ~ x1 + x2, y ~ 1 | ID, data = sim.data2, design = "V -> Y",
    totaliter = 10000, warmup = 1500, thin = 10, chains = 4, cores = 4,
    verbose=TRUE)
 # check diagnostics
 vm_diagnostics(m2)
```

End(Not run)

vmp_plot

Plot the posterior distributions of the focal parameters from a VM model

vm_diagnostics

Description

This function plots the univariate and bivariate (if applicable) distributions of the focal (alpha) parameters from a Variability Model where the variability is used as a predictor in a second-stage model. The latent variability estimates are referred to as "Sigma" and, if used, the latent intercepts are referred to as "U".

Usage

```
vmp_plot(alpha, useU = TRUE, plot = TRUE, digits = 3, ...)
```

Arguments

alpha	Results from running varian and extracting the results.
useU	Logical indicating whether to plot the latent intercepts (defaults to TRUE). Must set to FALSE if not available.
plot	Logical whether to plot the results or just return the grob for the plots. Defaults to TRUE.
digits 	Integer indicating how many digits should be used for displaying p-values Additional arguments (not currently used)

Value

A list containing the Combined and the Individual plot objects.

Author(s)

Joshua F. Wiley <jwiley.psych@gmail.com>

Examples

```
# Using made up data because the real models take a long time to run
set.seed(1234) # make reproducible
vmp_plot(matrix(rnorm(1000), ncol = 2))
```

vm_diagnostics

Plot diagnostics from a VM model

Description

This function plots a variety of diagnostics from a Variability Model. These include a histogram of the Rhat values (so-called percent scale reduction factors). An Rhat value of 1 indicates that no reduction in the variability of the estimates is possible from running the chain longer. Values below 1.10 or 1.05 are typically considered indicative of convergence, with higher values indicating the model did not converge and should be changed or run longer. A histogram of the effective sample size indicates for every parameter estimated how many effective posterior samples are available for inference. Low values may indicate high autocorrelation in the samples and may be a sign of failure to converge. The maximum possible will be the total iterations available. Histograms of the posterior medians for the latent variability and intercept estimates are also shown.

Usage

vm_diagnostics(object, plot = TRUE, ...)

Arguments

object	Results from running varian.
plot	Logical whether to plot the results or just return the grob for the plots. Defaults to TRUE.
•••	Additional arguments not currently used

Value

A graphical object

Author(s)

Joshua F. Wiley <jwiley.psych@gmail.com>

Examples

Make Me!

vm_stan

Create a Stan class VM object

Description

Internal function to create and compile a Stan model.

Usage

```
vm_stan(
  design = c("V -> Y", "V -> M -> Y", "V", "X -> V", "X -> V -> Y", "X -> M -> V"),
  useU = TRUE,
  UQ = FALSE,
  IIVQ = FALSE,
  centerU = 0,
  centerIIV = 0,
  ...,
  template_only = FALSE
)
```

vm_stan

Arguments

design	A character string indicating the type of model to be run. One of "V -> Y" for variability predicting an outcome, "V -> M -> Y" for mediation of variability on an outcome, "V" to take posterior samples of individual variability estimates alone.
useU	A logical value whether the latent intercept estimated in Stage 1 should also be used as a predictor. Defaults to TRUE. Note if there is a mediator as well as main outcome, the latent intercepts will be used as a predictor for both.
UQ	A logical value whether the latent intercept estimated in Stage 1 should also be used as a predictor with a qudratice effect. Defaults to FALSE. Note if there is a mediator as well as main outcome, the latent intercepts will be used as a predictor for both.
IIVQ	A logical value whether the latent variabilities estimated in Stage 1 should also be used as a predictor with a qudratice effect. Defaults to FALSE. Note if there is a mediator as well as main outcome, the latent intercepts will be used as a predictor for both.
centerU	A numeric vector of length one (scalar) that is used to center the latent inter- cept estimates before using as a predictor of the outcome / mediator. Uses the formula: (U - centerU). Particularly useful when including quadratic terms.
centerIIV	A numeric vector of length one (scalar) that is used to center the latent variabil- ity estimates before using as a predictor of the outcome / mediator. Uses the formula: (IIV - centerIIV). Particularly useful when including quadratic terms.
	Additional arguments passed to sampling.
template_only	A logical, not commonly used. If TRUE returns the Stan template code only, without actually compiling or running the Stan model. Useful for modifying the default models.

Value

A compiled Stan model.

Author(s)

Joshua F. Wiley <jwiley.psych@gmail.com>

Examples

```
varian:::vm_stan("V -> Y", useU=TRUE, template_only = TRUE)
varian:::vm_stan("V -> Y", useU=TRUE, UQ = TRUE, IIVQ = TRUE, template_only = TRUE)
varian:::vm_stan("V -> M -> Y", useU=TRUE, UQ = TRUE, IIVQ = TRUE, template_only = TRUE)
```

Index

```
* hplot
    vm_diagnostics, 11
    vmp_plot, 10
* models
    stan_inits,4
    varian,8
    vm_stan, 12
* utilities
    gamma_params, 2
    res_gamma, 2
    simulate_gvm, 3
    Variability_Measures, 6
by_id(Variability_Measures), 6
gamma_params, 2
res_gamma, 2
rmssd (Variability_Measures), 6
rmssd_id (Variability_Measures), 6
rmssid_id(Variability_Measures), 6
rolling_diff(Variability_Measures), 6
rolling_diff_id (Variability_Measures),
        6
sd_id(Variability_Measures), 6
simulate_gvm, 3
stan_inits, 4
summary.vm, 5
Variability_Measures, 6
varian,8
vm_diagnostics, 11
vm_stan, 12
vmp_plot, 10
```